• Slider Image
  • Slider Image
  • Slider Image
  • Slider Image
  • Slider Image
  • Slider Image
  • Slider Image
  • Slider Image
  • Slider Image
  • Квалифицированные специалисты

    Квалифицированные специалисты

  • Клиническое Превосходство

    Многолетний опыт работы

  • Индивидуальный план

    лечения для каждого пациента

  • Дентальная имплантация

    Дентальная имплантация

  • Прейскурант цен

    контакты

Dental Implant

What is Dental Implant

A dental implant is an artificial tooth root replacement and is used in prosthetic dentistry to support restorations that resemble a tooth or group of teeth. There are several types of dental implants. The major classifications are divided into osseointegrated implant and the fibrointegrated implant. Earlier implants, such as the subperiosteal implant and the blade implant were usually fibrointegrated. The most widely accepted and successful implant today is the osseointegrated implant, based on the discovery by Swedish Professor Per-Ingvar Branemark that titanium can be successfully fused into bone when osteoblasts grow on and into the rough surface of the implanted titanium. This forms a structural and functional connection between the living bone and the implant. A variation on the implant procedure is the implant-supported bridge, or implant-supported denture.

History

The Mayan civilization has been shown to have used the earliest known examples of endosseous implants (implants embedded into bone), dating back over 1,350 years before Per-Ingvar Branemark started working with titanium. While excavating Mayan burial sites in Honduras in 1931, archaeologists found a fragment of mandible of Mayan origin, dating from about 600 AD. This mandible, which is considered to be that of a woman in her twenties, had three tooth-shaped pieces of shell placed into the sockets of three missing lower incisor teeth. For forty years the archaeological world considered that these shells were placed under the nose in a manner also observed in the ancient Egyptians. However, in 1970 a Brazilian dental academic, Professor Amadeo Bobbio studied the mandibular specimen and took a series of radiographs. He noted compact bone formation around two of the implants which led him to conclude that the implants were placed during life.

In the 1950s research was being conducted at Cambridge University in England to study blood flow in vivo. These workers devised a method of constructing a chamber of titanium which was then embedded into the soft tissue of the ears of rabbits. In 1952 the Swedish orthopaedic surgeon, P I Branemark, was interested in studying bone healing and regeneration, and adopted the Cambridge designed rabbit ear chamber for use in the rabbit femur. Following several months of study he attempted to retrieve these expensive chambers from the rabbits and found that he was unable to remove them. Per Branemark observed that bone had grown into such close proximity with the titanium that it effectively adhered to the metal. Branemark carried out many further studies into this phenomenon, using both animal and human subjects, which all confirmed this unique property of titanium.

Although he had originally considered that the first work should centre on knee and hip surgery, Branemark finally decided that the mouth was more accessible for continued clinical observations and the high rate of edentulism in the general population offered more subjects for widespread study. He termed the clinically observed adherence of bone with titanium as osseointegration. In 1965 Branemark, who was by then the Professor of Anatomy at Gothenburg University in Sweden, placed the first titanium dental implant into a human volunteer, a Swede named Gosta Larsson.

Over the next fourteen years Branemark published many studies on the use of titanium in dental implantology until in 1978 he entered into a commercial partnership with the Swedish defense company, Bofors AB for the development and marketing of his dental implants. With Bofors (later to become Nobel Industries) as the parent company, Nobelpharma AB (later to be renamed Nobel Biocare) was founded in 1981 to focus on dental implantology. To the present day over 7 million Branemark System implants have now been placed and hundreds of other companies produce dental implants. The majority of dental implants currently available are shaped like small screws, with either tapered or parallel sides. They can be placed at the same time as a tooth is removed by engaging with the bone of the socket wall and sometimes also with the bone beyond the tip of the socket. Current evidence suggests that implants placed straight into an extraction socket have comparable success rates to those placed into healed bone. The success rate and radiographic results of immediate restorations of dental implants placed in fresh extraction sockets (the temporary crowns placed at the same time) have been shown to be comparable to those obtained with delayed loading (the crowns placed weeks or months later).

Some current research in dental implantology is focusing on the use of ceramic materials such as zirconia (ZrO2) in the manufacture of dental implants. Although generally the same shape as titanium implants zirconia, which has been used successfully for orthopaedic surgery for a number of years, has the advantage of being more cosmetically aesthetic owing to its bright tooth-like colour. Long-term clinical data is necessary before one-piece ZrO2 implants can be recommended for daily practice.

Procedure

A typical implant consists of a titanium screw (resembling a tooth root) with a roughened or smooth surface. The very first implants were made out of commercially pure titanium, however since it was discovered that the Ti6AlV4 alloy offered the same osseointegration level as commercially pure titanium, more and more implants were made out of Ti6AlV4 alloy due to its better tensile strength and thus fracture resistance. Today most implants are made out of the Ti6AlV4 alloy and treated either by plasma spraying, etching or sandblasting to increase the surface area and, thus the integration potential of the implant. An osteotomy or precision hole is carefully drilled into jawbone and the implant is installed in the osteotomy.

Implant surgery is performed as an outpatient under general anesthesia (if several implants are to be placed) or with local anesthesia (for simple cases) by trained and certified clinicians including general dentists, oral surgeons, prosthodontists, and periodontists. An increasing number of cosmetic dentists are also placing implants in relatively simple cases. In the UK the General Dental Council has guidelines on the training required for a dentist to be able to place dental implants in general dental practice. The most common treatment plan calls for several surgeries over a period of months, especially if bone augmentation (bone grafting) is needed to support implant placements. In straight forward cases patients can be implanted and restored in a single surgery, in a procedure labeled "Immediate Loading". In such cases a provisional prosthetic tooth or crown is shaped to avoid the force of the bite transferring to the implant while it integrates with the bone.

A single implant procedure that involves an incision and "flapping" of the gum or gingiva (to expose the jawbone) takes about an hour, sometimes longer; multiple implants can be installed in a single surgical session lasting several hours.

Healing and integration of the implant(s) with jawbone occurs over three to six months in a process called osseointegration. At the appropriate time, the restorative Dentist uses the implant(s) to anchor crowns or a bridge (a prosthetic restoration containing several crowns). Since the implants supporting the restoration are integrated, which means they are biomechanically stable and strong, the patient is immediately able to masticate (chew) normally.

In an immediate function procedure, the gingiva is usually not flapped (Flapless). Instead, the surgeon removes a small plug of gingiva directly over the drilling site. The site is drilled and the implant is installed. Then a crown is immediately added.

There are different approaches to place dental implants after tooth extraction. The approaches are:

Immediate post-extraction implant placement.
Delayed immediate post-extraction implant placement (2 weeks to 3 months after extraction).
Late implantation (3 months after tooth extraction).
According to the timing of loading of dental implants, the procedure of loading could be classified into:

Immediate loading procedure.
Early loading (1 week to 12 weeks).
Staged loading (3-6 months).
Late loading (more than 6 months).
Most patients need the longer treatment plan, which has an excellent history going back many years.[citation needed] Before surgery, with the patient fully awake or during an earlier office visit, a prudent clinician planning mandibular implants will conduct a neurosensory examination to rule out altered sensation, thus setting a base line on nerve function. Also prior to surgery, a panoramic X-ray will be taken using a metal ball of known dimension so that calibrated measurements can be made from the image (to accurately locate "vital structures" such as nerves and the position of critical anatomical features such as the mental foramen, which is the transit point in the jawbone for the nerve which innervates the lip and chin).

A zone of safety, usually 2 mm, is the standard of care for avoiding vital structures like the IAN. When computed tomography, also called cone beam computed tomography or CBCT (3D X-ray imaging) is used preoperatively to accurately pinpoint vital structures, the zone of safety may be reduced to 1 mm through the use of computer-aided design and production of a surgical drilling and angulation guide. Clinicians planning implant placement in the posterior mandible generally recognize CBCT as the standard of care.

At edentulous (without teeth) jaw sites, a pilot hole is bored into the recipient bone, taking care to avoid the vital structures (in particular the inferior alveolar nerve or IAN and the mental foramen within the mandible). Drilling into jawbone usually occurs in several separate steps. The pilot hole is expanded by using progressively wider drills (typically between three and seven successive drilling steps, depending on implant width and length). Care is taken not to damage the osteoblast or bone cells by overheating. A cooling saline spray keeps the temperature of the bone to below 47 degrees Celsius (approximately 117 degrees Fahrenheit). The implant screw can be self-tapping, and is screwed into place at a precise torque so as not to overload the surrounding bone (overloaded bone can die, a condition called osteonecrosis, which may lead to failure of the implant to fully integrate or bond with the jawbone). Typically in most implant systems, the osteotomy or drilled hole is about 1mm deeper than the implant being placed, due to the shape of the drill tip. Surgeons must take the added length into consideration when drilling in the vicinity of vital structures.

Once properly torqued into the bone, a cover screw is placed on the implant, then the gingiva or gum is sutured over the site and allowed to heal for several months for osseointegration to occur between the titanium surface of the implant and jawbone.

After several months the implant is uncovered in another surgical procedure, usually under local anesthetic by the restorative dentist or prosthodontist, and a healing abutment and temporary crown is placed onto the implant. This encourages the gum to grow in the right scalloped shape to approximate a natural tooth's gums and allows assessment of the final aesthetics of the restored tooth. Once this has occurred a permanent crown will be fabricated and placed on the implant.

An increasingly common strategy to preserve bone and reduce treatment times includes the placement of a dental implant into a recent extraction site. In addition, immediate loading is becoming more common as success rates for this procedure are now acceptable. This can cut months off the treatment time and in some cases a prosthetic tooth can be attached to the implants at the same time as the surgery to place the dental implants.

In all of these approaches, computer-based guidance has thrust itself onto the treatment stage. Not only will 3D digital imagery yield critical treatment guidance, the digital data can be used to manufacture precision drilling guides, virtually eliminating surgical errors.

Complementary procedures

Sinus lifting is a common surgical intervention. A dentist or specialist with proper training such as an endodontist, periodontist, prosthodontist, or oral surgeon thickens the inadequate part of atrophic maxilla towards the sinus with the help of bone transplantation or bone expletive substance. This results in more volume for a better quality bone site for the implantation. Prudent clinicians who wish to avoid placement of implants into the sinus cavity pre-plan sinus lift surgery using the precision diagnostic guidance afforded by a 3D CBCT X-ray, as in the case of posterior mandibular implants discussed earlier.

Bone grafting will be necessary in cases where there is a lack of adequate maxillary or mandibular bone in terms of front to back (lip to tongue) depth or thickness; top to bottom height; and left to right width. Sufficient bone is needed in three dimensions to securely integrate with the root-like implant. Improved bone height -- which is very difficult to achieve -- is particularly important to assure ample anchorage of the implant's root-like shape because it has to support the mechanical stress of chewing, just like a natural tooth. If an implant is too shallow, chewing may cause a dangerous jawbone crack or full fracture.

Typically, implantologists try to place implants at least as deeply into bone as the crown or tooth will be above the bone. This is called a 1:1 crown to root ratio. This ratio establishes the target for bone grafting in most cases. If 1:1 or better cannot be achieved, the patient is usually advised that only a short implant can be placed and to not expect a long period of usability.

A wide range of grafting materials and substances may be used during the process of bone grafting / bone replacement. They include the patient's own bone (autograft), which may be harvested from the hip (iliac crest) or from spare jawbone; processed bone from cadavers (allograft); bovine bone or coral (xenograft); or artificially produced bonelike substances (calcium sulfate with names like Regeneform; and hydroxyapatite or HA, which is the primary form of calcium found in bone). The HA is effective as a substrate for osteoblasts to grow on. Some implants are coated with HA for this reason, although the bone forming properties of many of these substances is a hotly debated topic in bone research groups. Alternatively the bone intended to support the implant can be split and widened with the implant placed between the two havles like a sandwich. This is referred to as a 'ridge split' procedure..

Bone graft surgery has its own standard of care. In a typical procedure, the clinician creates a large flap of the gingiva or gum to fully expose the jawbone at the graft site, performs one or several types of block and onlay grafts in and on existing bone, then installs a membrane designed to repel unwanted infection-causing microbiota found in the oral cavity. Then the gingiva is carefully sutured over the site. Together with a course of internal antibiotics and external antibiotic mouth rinses, the graft site is allowed to heal (several months).

The clinician typically takes a new panoramic x-ray to confirm graft success in width and height, and assumes that positive signs in these two dimensions safely predicts success in the third dimension, depth. Where more precision is needed, usually when mandibular implants are being planned, a 3D or cone beam X-ray may be called for at this point to enable accurate measurement of bone and Адрес of nerves and vital structures for proper treatment planning. The same X-ray data set can be employed for the preparation of computer-designed placement guides.

Correctly performed, a bone graft produces live vascular bone which is very much like natural jawbone and is therefore suitable as a foundation for implants.

Considerations

For dental implant procedure to work, there must be enough bone in the jaw, and the bone has to be strong enough to hold and support the implant. If there is not enough bone, more may need to be added with a bone graft procedure discussed earlier. Sometimes, this procedure is called bone augmentation. In addition, natural teeth and supporting tissues near where the implant will be placed must be in good health.

In all cases, what must be addressed is the functional aspect of the final implant restoration, the final occlusion. How much force per area is being placed on the bone implant interface? Implant loads from chewing and parafunction can exceed the physio biomechanic tolerance of the implant bone interface and/or the titanium material itself, causing failure. This can be failure of the implant itself (fracture) or bone loss, a "melting" or resorption of the surrounding bone.

The dentist must first determine what type of prosthesis will be fabricated. Only then can the specific implant requirements including number, length, diameter, and thread pattern be determined. In other words, the case must be reverse engineered by the restoring dentist prior to the surgery. If bone volume or density is inadequate, a bone graft procedure must be considered first. The restoring dentist may consult with the periodontist, endodontist, oral surgeon, or another trained general dentist to co-treat the patient. Usually, physical models or impressions of the patient's jawbones and teeth are made by the restorative dentist at the implant surgeons request, and are used as physical aids to treatment planning. If not supplied, the implant surgeon makes his own or relies upon advanced computer-assisted tomography or a cone beam CT scan to achieve the proper treatment plan.

Computer simulation software based on CT scan data allows virtual implant surgical placement based on a barium impregnated prototype of the final prosthesis. This predicts vital anatomy, bone quality, implant characteristics, the need for bone grafting, and maximizing the implant bone surface area for the treatment case creating a high level of predictability. Computer CAD/CAM milled or stereo lithography based drill guides can be developed for the implant surgeon to facilitate proper implant placement based on the final prosthesis occlusion and aesthetics.

Treatment planning software can also be used to demonstrate "try-ins" to the patient on a computer screen. When options have been fully discussed between patient and surgeon, the same software can be used to produce precision drill guides. A popular software package called Simplant (simulated implant) uses the digital data from a patient's CBCT to build a treatment plan, then produces a data set which is sent to a lab for production of a precision in-mouth drilling guide.

Success rates

Dental implant success is related to operator skill, quality and quantity of the bone available at the site, and also to the patient's oral hygiene. The general consensus of opinion is that implants carry a success rate of around 95%.